Simulation and Optimized Scheduling of Pedestrian Traffic From geometric modeling to pedestrian navigation
نویسندگان
چکیده
Today, more and more simulation tasks with a traditionally non-geometric background need to be embedded into some geometric context, in order to provide spatial context to non-spatial data. This holds especially true for graph-based applications in some location-aware context. As an example, one might think of a theme park or a large commercial center, where the customers shall be provided with some navigation and scheduling information such as where to go and when – either a priori or even in real time via some mobile device. This can be done by analyzing the pedestrian traffic and waiting time situation by simulating the pedestrian movement and using the simulation data to optimally navigate and schedule the tasks that are to be executed by the customer. The main issues addressed in this thesis are as follows. Initially, a flexible simulation framework is built to simulate the pedestrian movement in a 3D scenario, for example, a commercial building. Since the pedestrians strongly interact with the environment surrounding them, the geometry is taken into account. Architectural data such as paths, type and capacity of the paths, destinations and its properties, etc., is extracted from the CAD-model and are organized in a graph structure. The movement of the pedestrians and the waiting queues at the destinations are modeled as queuing systems using the discrete event simulation technique. These queuing systems are then embedded into the geometry model. The necessary input modeling parameters are also defined. The resulting scenario, when simulated, gives an overview of congestions and waiting times across the scenario for different time stages. Apart from the simulation, the geometry data – or here the graph – is hierarchically organized in an octree structure. An octree-based model is chosen since octrees have the natural property of hierarchically storing 3D data. The octree data is used to identify the position of the pedestrian within the scenario. The potential destinations in the neighborhood that can be visited by the customer are also identified using neighbor search algorithms. Combining the simulation data with the octree modeling, the customer is navigated to the optimal destination. Furthermore, when visiting several destinations, combinatorial optimization methods are used to optimally schedule the set of tasks to be executed by the customer. The optimization methods take into account the congestion information obtained from the simulation data, and the octree structure for navigation. This approach results in an effective pedestrian navigation system.
منابع مشابه
Simulation of Pedestrian Dynamics with Macroscopic and Microscopic Mathematical Models
Here, we collect two parts of a research project on the pedestrian flow modeling. Rapid growth in the volume of public transport and the need for its reasonable, efficient planning have made the description and modeling of transport and pedestrian behaviors as important research topics in the past twenty years. First, we present a macroscopic model for the pedestrian flow based on continuum mec...
متن کاملEmergent Crowd Behavior from the Microsimulation of Individual Pedestrians
Modeling pedestrian traffic at the micro-level is a relatively young research area. The key to success is driven on the ability to appropriately model crowd behavior that arises in pedestrian traffic. One method of validation for such simulation models examines their ability to reproduce commonly observed crowd behavior. This paper demonstrates how commonly observed crowd behavior emerges from ...
متن کاملAn Assessment of the Impact of Pedestrian Refuge Islands on Vehicle Speed Changes and Pedestrian Safety: Case Study in Tehran
Pedestrians are among the most vulnerable road users. Speed of vehicles is considered as one of the major causes of danger for pedestrians crossing the street. Therefore, it is of utmost importance to devise suitable solutions to reduce speed of vehicles. One of these solutions is installation of Pedestrian Refuge Islands (PRI) in very wide midblocks. With regard to fluctuations in pedestrian a...
متن کاملSimulating Pedestrian Navigation Behavior Using a Probabilistic Model
The Intermodal Simulator for the Analysis of Pedestrian Traffic (ISAPT) is being developed for the purpose of modeling pedestrian traffic within intermodal facilities, such that designers may evaluate the impact of building design on the Level of Service provided to pedestrians. The ISAPT system models each pedestrian’s behavior individually and the collective behavior of the crowd is allowed t...
متن کاملPedestrian route-choice and activity scheduling theory and models
Among the most interesting and challenging theoretical and practical problems in describing pedestrians behavior are route choice and activity scheduling. Compared to other modes of transport, a characteristic feature of pedestrian route choice is that routes are continuous trajectories in time and space: since a pedestrian chooses a route from an infinite set of alternatives, dedicated theorie...
متن کامل